If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-460=0
a = 1; b = 4; c = -460;
Δ = b2-4ac
Δ = 42-4·1·(-460)
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{29}}{2*1}=\frac{-4-8\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{29}}{2*1}=\frac{-4+8\sqrt{29}}{2} $
| -6x+11+8x=21 | | 16+2m-6=30 | | 22=5t+7 | | y+0.3=0.7 | | w/15+13=16 | | 9n-4=41 | | -7w-10=-7w-9 | | n/3-1=27 | | 33=2v+7 | | 6*6^(5x)=36*6^(x-7) | | (-124)+7x=(-2x)+164 | | -27=-v/4 | | 3-7q=-7q | | 25=2t+3t | | 27y-40=-94 | | 21=j+13 | | 0.1+y=1.0 | | F(x)=2x+25 | | -n=9n-10n | | 5x+7=2(x+4)+3x | | 3t-2=1=-11 | | 0.9+y=1.0 | | x+361=6.2 | | 168+9x=52-2x | | 30=2m+4m | | 3y–17=16 | | 6x-5=3x-20 | | -10+2n=-2n+10 | | 0.2+y=0.7 | | (7x-32)(6x-18)=180 | | y+0.3=0.6 | | 46=4j+10 |